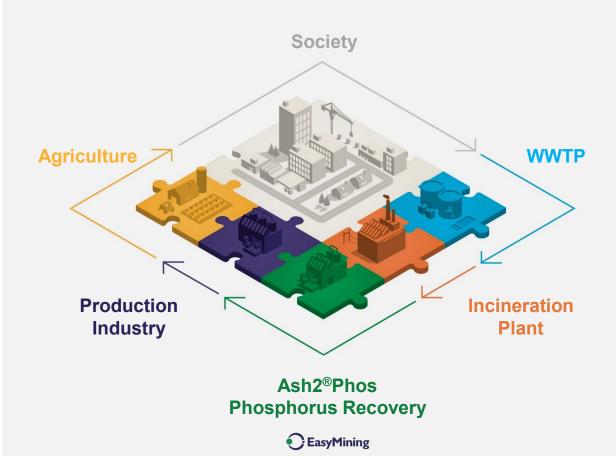

NUTRIENT RECYCLING

Quality matters! Volume matters! Reliability matters!

for circular economy

Christian Kabbe, PhD



Content

+

Quality matters! (Processing and use)

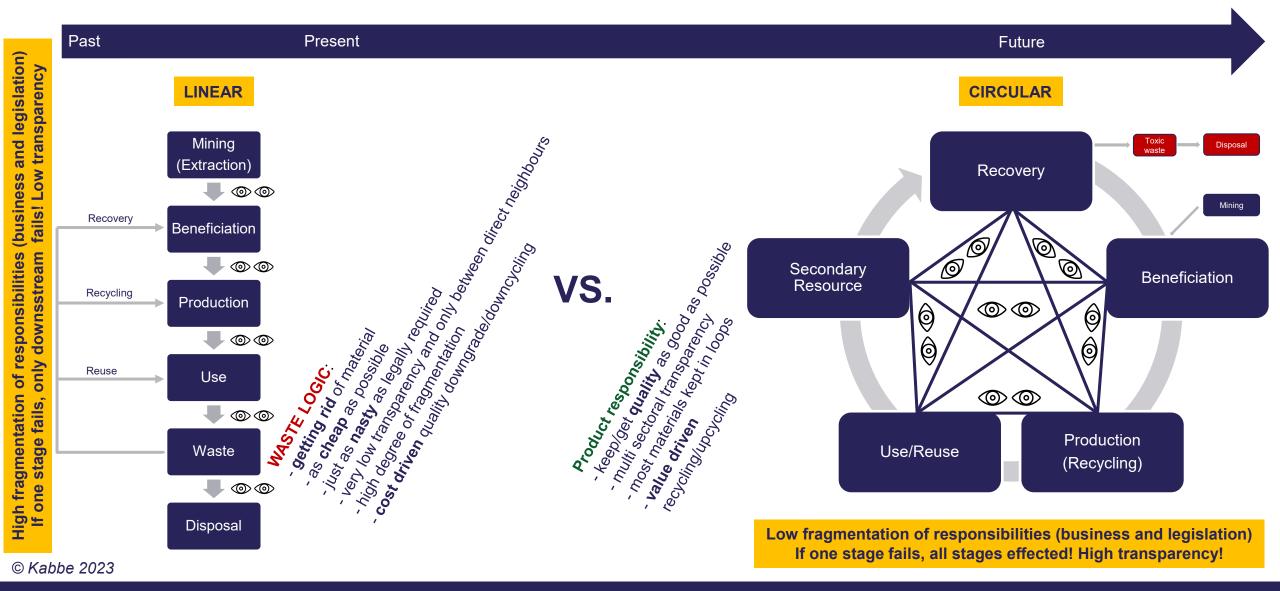
- Volume matters! (Relevance)
 - +
- Reliability matters! (Security of supply)

Demand (Market uptake)

ESSENTIAL FOR CIRCULAR ECONOMY: PARTNERSHIPS AND SHARED AMBITIONS

50 % Gelsenwasser Industrieservice Schkopau GmbH **50 %** EMG EasyMining Germany GmbH

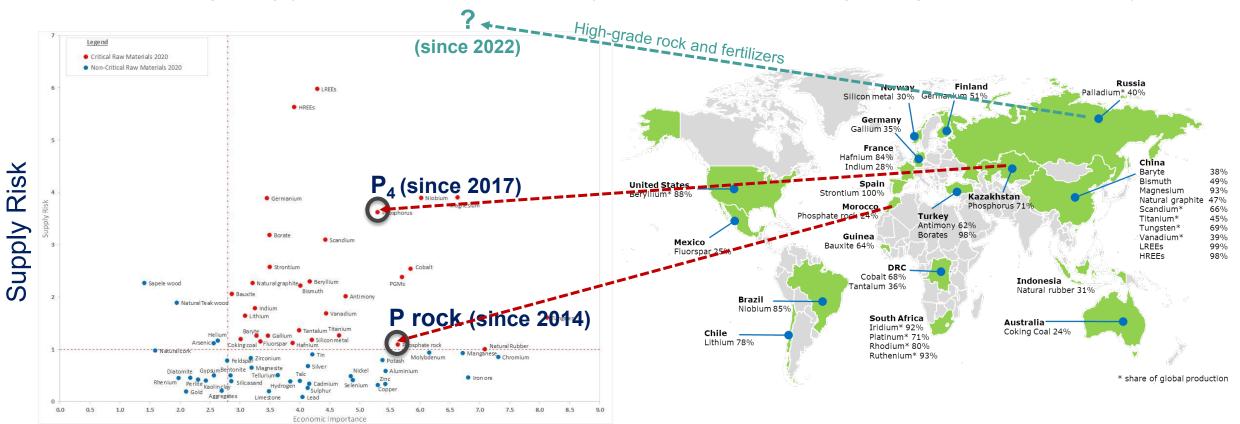
Implementation and operation of Ash2Phos plants in Germany, starting in Schkopau with 30.000 t SSA/a capacity



www.pg-schkopau.de

Common goal: 300.000 t SSA/a in 3-4 A2P plants

TRANSFORMATION – NOT JUST AN ECONOMIC QUESTION, RATHER A QUESTION OF ECONOMIC AND SOCIETAL SURVIVAL (AGE OF CHEAP ENERGY AND RAW MATERIALS IS OVER!)


PHOSPHORUS – A GUPER CRITICAL? SUPER CRITICAL?

RAW MATERIAL FOR EUROPE

... and global food supply

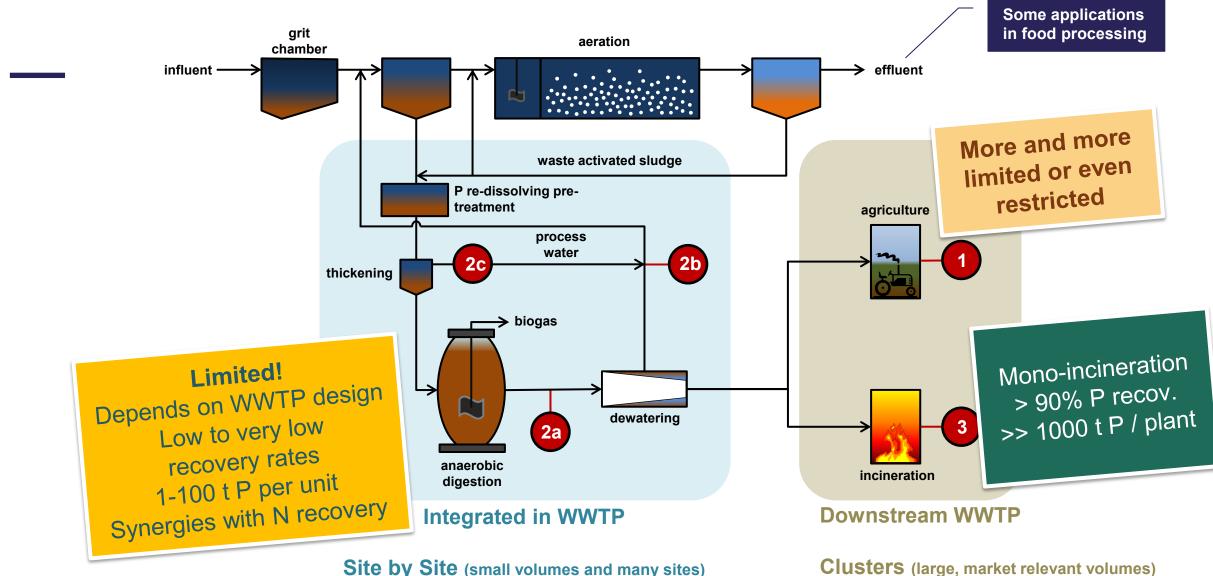
CRM list keeps growing (2011-14 CRMs; 2020-30 CRMs)

Countries accounting for largest share of EU supply of CRMs

https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical en

Economic Importance

EUROPE: P RELEVANT WASTE FLOWS (RENEWABLE SOURCES)


Total	Eco.ed	Potential								
297 circul	115 (?)	182								
1709	38	92								
NC10	6	122								
427-555	153-160	274-396								
Manure recycling = $\sqrt{N^{32}}$ 1736										
200										
	427-555 736	Total Fecoled 297 115 (?) 1700 38 6 6 427-555 153-160 736								

Van Dijk & Oenema Updated Van Di phosphorus flows in wastes in Europe", 2013, Fertilisers Europe seminar, 6 Feb. 2013.

Sewage (sludge) is the second most relevant renewable P source in Europe!

P RECOVERY & RECYCLING ROUTES: POCKET DUST VS. REAL VOLUMES

EasyMining

EUROPEAN DIMENSION - P IN MINERAL FERTILISERS - P RECOVERY POTENTIAL FROM SLUDGE ASHES AT HAND AND MID-TERM

European market volume for P in mineral fertilizers

P <u>potential</u> in sludge ash today and tomorrow

2017: appr. 500,000 Mg SSA in Europe containing appr. 45 kt P (DE: 23 kt P, NL: 6 kt P in ashes)

2030/35: appr. 1.2 million tons SSA in Europe containing appr. 108 kt P (DE: 50 kt P, NL: 9 kt P in ashes) With a 90% recovery efficiency, 97 kt P could be mined from SSA by end of decade annually

Compares to 4% (today) and appr. 8% (2035) of total P sales in form of min. fertilisers in Europe!

If all P in European sewage were tapped this way, 270 kt P (22 %)

Source: Eurostat/Fertilizers Europe 2019

SEWAGE SLUDGE ASH (SSA) – A HETEROGENIOUS, MINERAL CONCENTRATE

Element	%	mg/kg		%	Lin		
			von	bis			
Ρ	9,4	94.000	5,9	13,1			
Fe	10,8	108.000	1,8	20,3			
Са	10,1	101.000	7,1	16,2			
Al	5,5	55.000	2	20,2			
К	1	10.000	0,3	1,7			
Mg	1,3	13.000	0,3	2,5			
Na	0,6	6.000	0,2	1,1			
Ti	0,4	4.000	0,1	0,6			
Si	11,6	116.000	5	17,5	EU FPR	DÜMV	
			mį	g/kg	mg	/kg	
Cu	0,10	1.015	522	2.477	600	900	
Zn	0,29	2.862	1.882	4.930	1500	5000	
Cr	0,02	213	79	1.088	2	2	
Mn	0,17	1.713	435	4.932			
Ni	0,007	73	39	191	100	80	
Pb	0,01	139	63	363	120	150	
As	0,002	18,7	4,4	124	40	40	
Cd	0,0003	2,6	0,1	5,7	60	1,5 / 50	
Hg	0,0001	0,7	0,1	2,1	1	1	

SSA in Germany: composition based on SSA monitoring (BAM 2014) and own analyses

Matrix elements

Esp. (Fe+Al) vs. P ratio!

Heavy metals

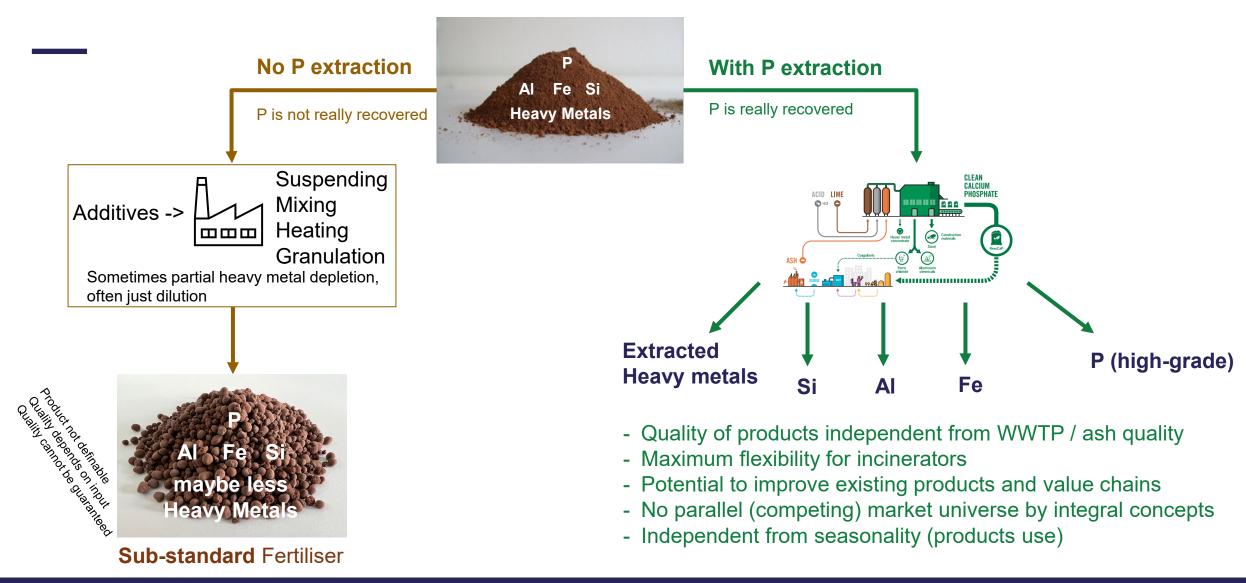
Monitoring von Klärschlammmonoverbrennungsaschen hinsichtlich ihrer Zusammensetzung zur Ermittlung ihrer Rohstoffrückgewinnungspotentiale und zur Erstellung von

49/2014

Referenzmaterial für die Überwachungsanalytik

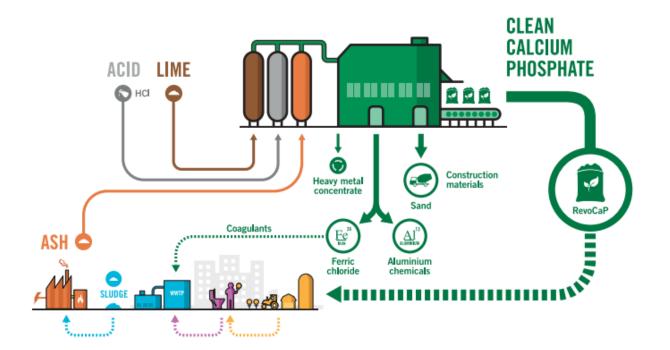
Für Mensch & Umv

Umwelt 🎲 Bundesamt


P RECYCLATES, P ROCKS MIRRORED AGAINST DÜMV AND

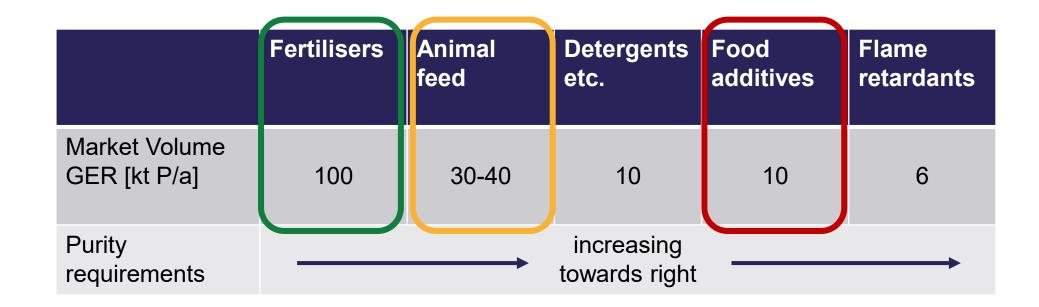
EU-FPR ... EVEN MORE RELEVANT, WHEN USING XY MG/KG P

	Material	Parameter	P ₂ O ₅ [%]	Fe [%]	AI [%]	As [ppm]	Cd [ppm]	Cr [ppm]	Cu [ppm]	Hg [ppm]	Ni [ppm]	Pb [ppm]	Tl [ppm]	U [ppm]	Zn [ppm]	Тур
	Ash mixed with P acid		36	2,8	3,1	6.2	1.3 (3,6)	144	427	1	39	46	<0,4		1092	ıental
	Ash mixed with P acid		42	4,8	?	27	2,5 (5,9)	98	612	0,3	74	107	<0,4		1860	⁄ant elen on
	Rotary kiln and	3% MgCl ₂	21		?	10	-0.4	2	940	<0,05	89	34	-0.4		2100	P recyclates and relevant elemental composition
	additives	6% MgCl ₂	21	?	?	9,3	<0,4	?	780		65	15	<0,4		1400	
	Extracted Ca-Phosphate (CaP)		39	0,1	0,3	1,4	<0,1	1	5	<0,1	2,5	3,6	<0,4		34	Prec
	Limit EU FPR PFC1					40	3 bzw. 60 (mg/kg P ₂ O ₅)	2 (Cr ^{vi})	600	1	100	120			1500	Regulations and limit values
	Limit DÜMV					40	1,5 bzw. 50 (mg/kg P ₂ O ₅)	2 (Cr ^{vi})	900	1	80	150	1		5000	Regulati limit v
50%	Russia (KOL/	4)	39			1	0-0,4	0,5-1,3	26-35		4,7-7,3	2,9-5,5	0,0	3,0-3,35	10,5-26,7	levant
29%	lsrael Nahal Zin, Oron		33			3,8-9,1	5-19	47-214	13-46		21-97	3,6-6,2	0-0,5	129-215	328-499	Phosphate rocks and relevant elements
14%	Senegal (Taiba)		37			1,3-3,1	68-106	118-156	47-52		34-45	6,4-7	0,0	104-115	398-488	hate roci elem
7%	Morocco 4 Minen		33			3,7-14,8	3-41	118-335	10-55		10-78	4-9	0-0,4	71-245	128-476	Phosp


Elements in Orange: Increased exposition even under legal conditions when pimped waste is used instead of really decontaminated recyclates or virgin sources EasyMining

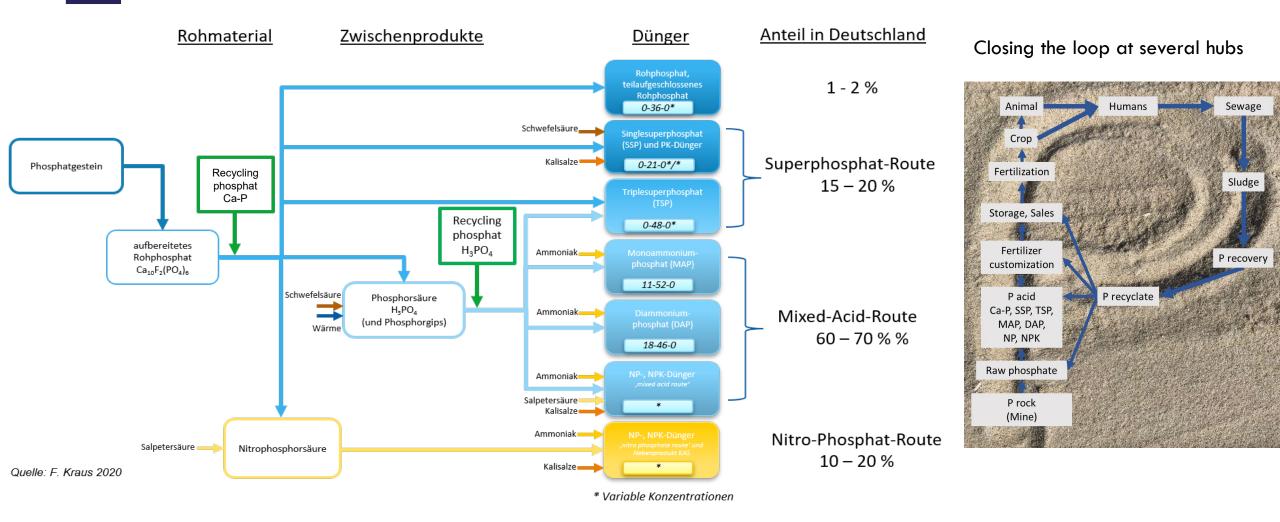
P RECOVERY FROM SEWAGE SLUDGE ASHES FOR FERTILISERS, ...

SUSTAINABLE TO CARE FOR ONLY ONE ELEMENT IN WASTE MATRIX? – DEFINITELY NOT!


- > High P recovery rate (> 80%)
- > High P product purity (>98%)
- > Efficient heavy metal separation (>96%)
- > Commercial co-products (i.e. FeCl₃)
- Defineable product qualities independent from input ash
- > Real waste reduction (>95%)
- > Industrial symbioses in chemical industry parcs

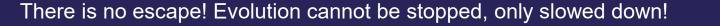
Ę

MARKET SEGMENTS FOR P IN GERMANY



Nutrient recycling from sewage in EU is discriminated by origin, not by quality!

- Fertilisers are currently the only legal route to recycle P from sewage as a nutrient!
- Sewage based nutrients are excluded by origin from feed no matter of quality
- Sewage based nutrients are banned from food additives, no matter of quality


INTEGRATION – QUALITY RECOVERY AND RECYCLING ALLOWS TO SUSTAIN DOMESTIC PRODUCTION, JOBS, KNOW-HOW AND INCREASES SUPPLY SECURITY BY REDUCING IMPORT DEPENDENCY

SUMMARY & OUTLOOK

- We are still stuck in linear mine to dump (mine) scheme (high degree of extraction of (limited) global natural resources)
- Waste logic (getting rid of waste at lowest cost) and high fragmentation (legislation and value chains) are biggest obstacles for transformation
- Need for paradigm shift from waste logic to value driven (economic and societal) resource/product logic
- Market deployment will gear up once relevant volumes become reliably available (no material, no market)
- Centralized P recovery (i.e. from ash) allows market relevant qualities, volumes and reliability!
- The longer we wait, the higher the cost of inaction for society!
- Knowing is not enough, we must apply! Willing is not enough, we must do! (J.W. v. Goethe) Now!!!

Christian.Kabbe@easymining.com

\$ +49 (0)30 61647943